Personalization of Assitive Driving Tasks in
CARLA

Prajankya Sonar Sanjeev Kannan

Abstract— Our goal is to develop a driver-in-the-loop
framework to enable studying and testing of the per-
sonalized assisted driving systems. The project involves
development of integrated hardware and software to enable
the interactive user study. Here, we focus on personalization
primarily for three tasks : Adaptive Cruise Control, Lane
Keeping and Lane Change. We base our work on the latest
state-of-the-art methods.

Index Terms—ADAS, personalization

I. INTRODUCTION

Advanced driver-assistance systems (ADAS) are being
deployed in modern vehicles to automate, adapt and
enhance vehicle systems for a safer and better driv-
ing experience. Safety features are designed to avoid
collisions and accidents either by alerting the driver
(Passive ADAS) or by taking the control over the vehicle
(Active ADAS). These adaptive features may provide
adaptive cruise control (ACC), lane departure warning,
forward collision avoidance, Lane keeping assist and
other forms of driving assistance. However, the generic
ADAS system might not be suitable for all drivers.
Hence, personalization of ADAS is being adopted to not
only improve safety but also to adapt the technology to
the user’s driving style. For example, some drivers value
efficiency and time, and feel comfortable being closer to
other vehicles. On the other hand, some prefer defensive
driving style where they value safety and maintain larger
distances from the leading vehicle (as depicted in Fig. 1).
In this work, we personalize an assistive driving system
that can learn and adapt to the driver’s style and meet
his/her needs.

We have looked at research on personalizing certain
driving tasks and have implemented a slightly modified
version of the algorithms on the CARLA simulator
and our hardware setup. We have modified the existing
algorithms so that we can add a layer of personalization.
Through user study, we have invited multiple users
to perform different driving tasks. From their driving

All authors are from Worcester Polytechnic Institute, (prajankya,
skannan, ssagrawal, zzhong3)@wpi.edu

Sapan Agrawal Zhuoyun Zhong

aggressive user’s style defensive

@ ([@
I —,

[] [] M

Fig. 1: Different driving behaviors in distance keeping

[1]

data, our model is successfully able to learn different
parameters and personalize a driving system to perform
tasks in their respective driving styles.

As our contribution, we developed a driver-in-the-loop
framework for studying and improving driver assisted
systems. The project involved development of software
(assisted driving and personalization) to simulate the
driving tasks in CARLA simulator and the hardware
to enable the interactive user study. To validate our
framework, we performed user study experiments for
different assisted driving tasks (ACC, lane keeping and
lane changing) while learning and modifying the ADAS
system to mimic the user driving behaviour. Following
are the different use cases of our framework:

o Students/researchers can implement and test ad-
vance motion planning or control algorithms inde-
pendently as we provided the basic functionalities
in each module.

e The driver-in-loop framework can be used to per-
form user studies not only limited to personalization
but also for testing shared autonomy, learning for
data tasks, human sensing and shared perception-
control [2].

The report is organised as follows: The next section,
Sec II outlines the related work in the field of personal-
ization. In Sec. III, we explicitly define our project goals
and proposed method. Later in Sec IV, we discuss the
implementation details of the project at levels of Plan-
ning, Controls, Personalization and Software-Hardware

Integration. In Section V, we discuss the user study and
experimentation and results of personalization.

II. RELATED WORK

Personalization in assisted driving systems is a re-
search area that started in the late 90’s and has gained
traction in recent years due to progress in vehicle
autonomy. Personalization methods can be broadly be
categorized into two groups : explicit and implicit. The
explicit methods involve presenting a fixed number of
setting options for the vehicle owner/driver to choose. On
the other hand, implicit methods try to observe the driver
patterns over a period of time and aim to match that
driving style. Explicit methods offer more direct control,
but restrict the driver to a small number of settings.
Implicit methods allow precise and fine tuned control.
Our work focuses on coming up and testing implicit
personalization methods.

ADAS
Lane change
Lane keeping

1995 2000 2005 2010 2015

)8@3

o o «@&8 Acc
@ o @ @ @ FCW/ brake assist
Other areas
ke O Autonomous vehicles
\v4 A\A%Y Cooperative assistance
=] E\ oo Electric vehicles
ﬁAA A A DA Infotainment

1995 2000 2005 2010 2015

Fig. 2: Timeline :
mobile sector [3]

personalization research in the auto-

Figure 2 shows a timeline for research done on
assisted driving tasks. Our project focuses on personal-
ization for three tasks - Adaptive Cruise Control(ACC),
Lane Following and Lane Change. As can be seen in the
figure, ACC has been researched since the early 2000s,
with lane change being relatively new research topic.

Approaches for ACC are broadly broken down into
group based and individual based. In the former, drivers
are assigned to one of few representative driving styles
for which an ACC control strategy is implemented. In
the latter, the ACC strategy tries to best reproduce the
driving style of an individual driver. Rosenfeld et al.
[3], [4], present a group-based approach to the predict
the driver’s preferred ACC gap setting and when they
tend to engage and disengage ACC. A notable individual
driver approach includes the work done by Bifulco et
al. [5], where ACC is adapted in real-time to individual
drivers based on observation of their driving style. The

controller framework is based on a linear model using a
recursive least squares filter to reproduce the time gaps.
This approach contains two modes: a “learning mode”,
in which the current driving style is observed and the
corresponding parameters of the car following model are
learned, and a “running mode” where the newly learned
car following model is deployed. A similar approach
used by Ramyar et al. [6] extended the modes to path
following mode, car following mode, and lane change
mode.

Our method of personalizing vehicle following is
based on a method described by Wang et al. [7]. The
method defined time headway THW and time to collide
TTC as the parameters to personalize. The collected data
showed that during a vehicle following task, the inverse
of TTC, TTCi, is distributed around 0, leaving THW the
only key factor of a driver’s behavior. The prediction of a
driver’s preffered THW, however, was simpler computed
by using mean. In our user study, a better modeling
method was used and described in later section.

To decide whether the driver is going to perform a
lane change, [8] develop a system that automatically
detects the possibility of a lane change, and implements
the maneuver without requiring driver’s explicit initiation
using the turn signal lever. The lane change decision is
made by a support vector machine (SVM) based classi-
fier. However, the decision making for a lane change is
not the consideration of this project. Our foucs is on the
personalized lane change trajectroy, hence we assume
that the driver is driving on a mandatory lane change
(MLC) condition.

For automating a mandatory lane change, five factors
must be looked at - ego vehicle’s velocity, lateral distance
of lane change, time to finish a lane change, distance
of leading vehicle in destination lane and distance of
trailing vehicle in destination lane [9]. In their work,
the collected data was separated into training set and
test set, and a high-dimensional Gaussian Mixture Model
(GMM) method is used to train a driver’s model. This
showed a low mean difference when predicting with
test set. However, the model only focused on the lateral
movement of the vehicle without personalizing the longi-
tudinal performance of the driver. In our implementation,
longitudinal performance was also considered.

III. PROPOSED METHOD

The development of the project is divided into three
parts - an Autonomous driving system(software), a driver
personalization model and hardware to interact with the
driver.

Environment

Autonomous driving system

Driver's style

' i Semsing Plaming E
| 1 Input };1_..-'7-[Behavior planner J— - | Carspeed
L e | | : \
i | Carla 5 ! e e
E Simulator | | Control . };/{ Local p|anner -._:._> Parameter /«'E
|~ | ouput | | | detection |1 [: ! | server
 — .l A) N J
! e - A
""""""""""" ' N\ Contol ~. _— \ 1
Driver feedback (Hardware) N\ r \ - \;""' 3 L Driver Controls (Hardware
o 1 ~ |
Steeri ‘{ Long. controller J‘;--H____ ﬂ{ State
- eering [| = T e eering torque
Steering wrhesd b | manager ~ 5

wheel output |

motor

ot

e —~‘ Lateral controller 1

Steering and pedal

Fig. 3: Proposed architecture

The Autonomous driving system architecture is very
similar to most commonly used architectures in au-
tonomous vehicles, consisting of three parts- sensing,
planning, control. As shown in Fig. 3, sensing module
comprises lane and object detection. Planning consists
of Behaviour and Local planning. These planners will
generate waypoints which would be used by Lateral and
Longitudinal controllers to control the vehicle’s pedal
and steering. The pedal and steering output is then used
by the simulator to control the vehicle in simulation. The
steering output from lateral controller is also used to give
torque feedback on the steering to the driver, which can
be used as assist driving or as autonomous driving.

Two communication modules namely Parameter
server and State manager manages all the communication
and states between all these modules, and also gives
the parameters to Driver’s style learning models. These
models try to understand the driver’s behaviour and try
to update driving parameter to better adapt to the drivers’
styles.

There is a torsional resistive sensor on steering wheel
to detect when the user is controlling the steering wheel.
This can be used as a switch to give back the control to
user, or detect the amount of resistance by the driver to
control how much assistance torque the system will give
on the wheel.

Our end goal is to use all the above modules in a
personalization module. For this, we will be inviting
different users to perform three tasks on the hardware
setup - lane following, vehicle following and lane lane
change. After multiple iterations of each task by each
user, key parameters are identified that can be used

to simulate the user’s driving style and personalize an
assisted driving system. Our model will be evaluated by
the accuracy in identifying key parameters like preferred
target velocity, time taken for a lane change to ultimately
derive a model that operates similar to the driver’s
characteristic driving style.

IV. IMPLEMENTATION

As shown in Fig. 4, Carla simulator is connected
to Autonomous driving system using Sensor input and
controller output. The developed Autonomous driving
system (ADS) consists of three parts, sensing, planning
and control.

Sensing is done with 2 sensors, Camera and Radar.
These inputs are given to Finite state machine in plan-
ning. This is used for local planning using waypoints.
Control section contains a Longitudinal controller and
MPC, Stanley based lateral controllers. All this infor-
mation is used for learning the Driver styles by various
sub models.

Hardware is used in learning mode where it gives
input to carla. In performing mode, controllers control
the ego vehicle in simulation. The Steering wheel is
attached to a motor which is used to turn the wheel.
A feedback in the form of rotation angle is published
out which is used by the developed motor driver. This
driver communicates with the motor in SimpleMotion
Protocol and is connected to run in near real-time loop.
The loop is implemented in a multi-threaded fashion and
hence uses atomic locks and mutexes extensively to share
memory between the threads. A front API for the motor
driver is developed in python to easily communicate with

En\flron ment Autonomous driving system

Driver’s style
learning models

"[Finite State Machine]« L

39"'_5! ng_____ ?9!"?_”_'9[Planning
r ! lBen?or Camera
Carla : npu -
Simulator V
L y \[Radar
- I E—
! Controller | | Local Planner J
i Output ; i
3:' """ Control /
Driver \ T -
Output \ Longitudinal
\| Controller
Controls | | \
(Hardware) Stanley Controller J

(Motor driver
Serial over USB . S
————— | Simple Motion interface

o L)
‘./ ‘ Cpp Multi-threaded control loop ‘
1
\ T
_7 _~—| Python binding |
Steering wheel {I)
with motor

Steering angle|

! Torque control
as feedback |

Throttle and brake I s utput

——.asinput -~
N Vg

/”—/ . “ Autonomous driving system ‘

Pedals

Fig. 5: Hardware implementation

CARLA. Hence an internal python to C++ binding is
used to communicate.

This python binding will emit callbacks on event for
encoder feedback and other events. This is used by
the Autonomous driving system(ADS) as steering angle
input. Output from the Autonomous driving system as
Torque control is given to the python binding to run on
motor.

Throttle and brake pedals are externally connected as
joystick interface to the Autonomous driving system.

Fig. 6 shows the hardware developed for the project.
The motor has a flange which is used to connect a
steering wheel.

A. Planning

The Planning stack for the simulator is broadly divided
into two modules- global planning and local planning
modules. The global planner searches for a an optimal
path in a graph that represents the environment. The

] N erervoms |
Parameter D i
Server N

ACC

Fig. 6: Hardware testing

output of the global planner is a list of waypoints, and
this list is passed to the local planner. The local planner
further discretizes this path and identifies an optimal path
between the waypoints present in the path. The local
planner takes care of operations like lane change and
obstacle avoidance. The output of the local planner is
also a list of waypoints, but the size of this list is much
bigger than the output of the global planner. The output
from the local planner is then passed to the controller.
The process is explained in greater detail below :

Global Planner

Environment Map : Our environment is chosen from
one of the available town maps provided by the CARLA
simulator. Each town is represented in the form of
directed graph to accurately model one-way roads. An
example of a town map is shown in Fig 7. This directed
graph is modeled using the Python netwrokx library.
Another parameter we can control is the hop resolution.
The Hop resolution allows us to customize spacing

between nodes and hence dictate number of nodes in
the graph. Since precise control is desired, we set the
hop resolution at 0.1 metres.

Fig. 7: Town Map in the CARLA simulator

Path Search : Once we have a graph, we can specify
start and destination locations. Exact coordinates of the
locations are not required since CARLA simulator has
inbuilt functions that can identify nearest valid nodes
that lie on the road. Once the nodes nearest to the start
and destination locations are identified, the optimal path
between the two graph nodes is identified using the A*
search algorithm. The nodes’ coordinates(waypoints) are
stored in a list and passed to the local planner.

Local Planner
Once we have the path from the global planner, the local
planner further discretizes it. The local planner is respon-
sible for fine control and generates waypoints between
nodes given by the global planner. The discretization
is based on a parameter called sampling radius. The
sampling radius is defined as the distance travelled by
the car travelling at a set target velocity in one time step.
The time step used here is 0.05 seconds and the target
velocity typically lies between 20 to 60 km/hr.

Waypoints are generated based on the sampling radius
are then stored in a double ended queue - Waypoint
Queue. The size of the Waypoint Queue is typically
very large(20,000 in our case) so that it can store several
waypoints. At each time step, its’ size is checked. If the
size is less than 10,000, then it is further populated with
a few hundred waypoints (100-200 in our case).

Waypoints are transfered from the Waypoint Queue to
another double ended queue - Waypoint Buffer. The size

of the waypoint buffer is usually very small (14 in our
case). At each time step, we delete the waypoints the
car has crossed and check the Waypoint Buffer size. If
the Waypoint Buffer Size is not equal to its capacity,
waypoints are added from the Waypoint Queue till the
Waypoint Buffer is full. The transferred waypoints are
then deleted from the Waypoint Queue. The small size of
the Waypoint Buffer allows an iteration across its length
at every time step. The waypoints in the Waypoint Buffer
are then passed to the Controller at every time step. The
entire flowchart of the planning module is shown in Fig
8.

Global Planner

l Global Route

Compute_next_Waypoints(){
Define Sampling Radius
Update Waypoint Queue //size~ 20,000
Update Waypoint Buffer //size~ 10

l Target Waypoint

Controller

Fig. 8: Flowchart showing inputs and outputs of the
planning module

B. Controllers

To navigate through the waypoints generated by the
local planner, we tested three different controllers in
CARLA. The vehicle can be controlled using the steer-
ing, throttle and brake inputs to the CARLA. The details
of each controller has been mentioned in this subsection.

1) PID Controller: We use two separate PID con-
trollers for minimizing the errors in the each direction of
motion viz. Lateral and Longitudinal. The Longitudinal
PID controller maintains the reference velocity of the
car. The longitudinal controller can be defined as,

€long (t) =V — Upef
throttle(t) = Kpeiong(t) + Ki€iong(t)

1)
e / Ctomg (£)dt

A simple lateral control strategy is to minimize the
heading error. As shown in Fig. 10, df represents the

dé

Fig. 9: PID Controller

heading error as the difference between the heading an-
gle of the car and the tangent to the waypoints trajectory.
Thus, the lateral controller ca nbe formulated as,

elat(t) =0-— ades
steering(t) = Kpeiai(t) + Kaqérat(t)

(2)
+K; / €lat (t)dt

Fig. 10: Stanley Controller

2) Stanley Controller: For given set of kinematic
equations, steering controller is designed such that the
resulting differential equation has a globally asymptot-
ically stable equilibrium at zero crosstrack error [10].
Beside the heading error, this controller also minimizes
the cross track error (cte) defined as the distance from
the vehicle normal to the trajectory along the lateral
direction. The steering controller can be defined as,

K e * cte

steering(t) = df + arctan() 3)

v

The longitudinal controller remains the same as shown
in the Equation (1).

C. Model Predictive Controller(MPC)

MPC is a more advance and widely used control
strategy for autonomous vehicles. It is a model-based
receding horizon control which minimizes the cost sat-
isfying a set of constraints. Additionally, due to its
predictive nature (outputs state and control trajectory
for N time-steps in future), it can take into account the
latency or the time lag between the control command
generation and control execution (practical value of 100
ms).

At each period, we read from the sensors to determine
the current state of the vehicle including:

X =[z,y,¢,v,6,d] “4)

where, (X, y) location of the vehicle (x along the
longitudinal direction and y in lateral direction), v is
speed, 1) is heading angle, ¢ is the steering angle and a
is the the acceleration.

For our purpose, we use a simple kinematic bicycle
model to describe the vehicle’s motion as shown in the
11.

YA«O

Fig. 11: Bicycle Model

where, [is the distance from the center of the mass to
the front axle. S is the angle of v with respect to the car
axis. In our example, we assume this is zero. (i.e. the car
is not sliding). Thus, the kinematic model is formulated
as,

ZTyp1 = Ty + vecos(y) * dt
Yer1 = Yr + vrsin(ihy) x dt

(
Vig1 = Py + Lftfst * dt
! (5)

Vt+1 :vt+a*dt
cteryr = f(xe) — yr + vesin(ed) = dt
v
6’(/}t+1 = ’(/}t — ges + Lit(st * dt
f

where, f(z) is the cubic fitted trajectory for the
waypoints and ¥4, being defined as,

f(z) = azz® + asx? + a1z + ag
df (x (6)

Pdes = arctan (f()>

dx

In MPC, we define a cost function to optimize our path
with the trajectory. For speed, we penalize the model if
the car cannot maintain at a target speed. We want no
acceleration and zero steering if possible. But since it is
unavoidable, we want the rate change to be as low as
possible if it happens.

N
T =3 werelletel[* + weplled]* + wy|[v — vresl |
t=1
N—-1
+ 5" wsll811® + wallal?
t=1
N
+ ZwT'ategHét — 51&—1”2 + wratea”at — @t—1||2
t=2

(7N
Beside the system model as one of the constraints, we
define additional constraints on the control limits as,

J € [—257,25]

ae[-1,1] ®

Finally, we run the optimization using Equations (4-8)
using the CasADi [11]. Following is the result of the test
run for the race track environment in CARLA.

V. PERSONALIZATION

The personalization module collects driver’s key be-
haviors in the following three scenes: lane following,
vehicle following and lane changing. Different param-
eters are used in these three scenes to personalize the
model.

Gaussian Mixture Model (GMM) is a very helpful tool
to learn from the driver’s data and is used in all of the
three personalization tasks. GMM is defined as,

100 4

Start

-100

-200 -

-300 -

-400 -

=500 -

600 |

=700 A

360 2(‘)0 160 (I] —lhO —2‘00
Fig. 12: MPC, the orange trajectory followed by the
vehicle overlaps perfectly with the green waypoints

trajectory.

K
p) = ¢iN (i, 5s) 9)

i=1
where the i component is a Gaussian distribution

with weights ¢;, means p; and covariances ;. One
example of a GMM with 5 components fitting a set of 2D
data is shown in Fig. 13. Besides fitting and clustering
data, the GMM can also perform regression to predict
the missing values. The red points in the figure are the
most likely y values given a set of x values.

The experiment is separated into two phases, the
learning phase and the performing phase. In learning
phase, the driver is driving, and the model will collect
the data and learned from them. In performing phase,
the autopilot will take the control of the vehicle.

A. Lane Following

Our first task is to personalize the lane following,
which is defined as driving on a certain road with a
speed limit and without any vehicle in front as shown in
Fig. 14.

We followed some principles while collecting data for
lane following task. We assumed the driver had a desired

Fig. 14: Lane Following Scene

speed range. The data used for training was the one with
stable driving speed. The vehicle would be running on
only one test road and 10 sets of data would collected
for each driver.

The personalization parameters of this task is the
target speed. As shown in Fig. 15, the first set of data of
driver 1 was plotted. The first half of the image is the
histogram of stable speed. The y axis is the density of
probability and the x axis is the collected stable speed.
GMM with 3 components were used to fit the data. In
this case, the whole GMM was not used to predict the
mean of stable speed, but was used to cluster the data.
The second half of the figure gives a plot of velocity over
time. The straight lines give the estimated main of each
Gaussian component. The red Gaussian has the highest
weight, so we believe that is a good fitting of the driver’s
target speed.

All 10 sets of data of 3 drivers are plotted in Fig. 16.

| VY

Fig. 15: Driver 1 Set 1 Target Speed Training Data
Driver Learned Result | Desired Speed Range
Driverl 40.02 km/h 35-40 km/h
Driver2 24.91 km/h 22-25 km/h
Driver2 58.96 km/h About 55 km/h

TABLE I: Target Speed Result

One could clearly observe that driver 3 is more defensive,
the driver 2 is more aggressive and the driver 1 is more
an average style. After the experiment, we asked the
drivers for their desired speed ranges while performing
the driving task, and we computed the result velocity of
the training set. The comparison among them is shown
in TABLE 1. The result shows that the predicted target
speed are within the desired range speed, the model
could therefore predict the target speed in this case.

Wil

Fig. 16: Target Speed Training Data of All 3 Drivers

B. Vehicle Following

The second task is to personalize the vehicle following
performance, a typical scene of Adaptive Cruise Control
(ACC), which is defined as driving on a certain road
with vehicles in front as shown in Fig. 17.

Fig. 17: Vehicle Following Scene

The principles we follow during collecting data in this
case was that we only collect data when the relative
speed to the leading vehicle is close to O [7]. The idea
of doing this will be explained later. Same as before, the
vehicle would be running on only one test road and 10
sets of data would collected for each driver.

The personalization parameter used in this case is
called time headway, which is defined as

THW = D/v (10)

where D is the distance to the leading vehicle and
v is self velocity. Another very important parameter is
the inverse time to collide (TTC) and its inverse TTC;,
which are defiend as

TTC = D/v,

11
TTCZ‘:UT/D ()

With the desired TT'C; to be zero, the personalization
parameter of this task is THW. As shown in Fig. 18,
the right upper plot is TT°C; histogram. The left upper
plot is TTW histogram, which is our desired parameters.
The lower side of the figure shows the data during
vehicle following process. The missing part is considered
to be the vehicle approaching state, which is therefore
removed from the training.

We inherited the idea of the related work that TTC;
would be distributed around O and the fact was shown
in our data as well. In the task of computing the driver’s
desired THW, however, we believed calculating the time
using simple mean would be slightly larger than the
driver’s intention, as demonstrated by one of our data
set. Therefore, we, same as the last task, used GMM

Driver Learned Result of mean | Learned Result of GMM
Driverl 3.64 s 320 s
Driver2 3.12s 2.88 s
Driver2 3.23s 294 s

TABLE II: THW Result

to fit the data. In this case, we could either assume the
Gaussian component with highest weight, the red one,
predicts the best parameter, or the general GMM predicts
the best.

W‘“‘Im 18
—

Fig. 18: Driver 1 Set 1 Safe Distance Training Data

All 10 sets of data of 3 drivers are plotted in Fig.
16. In this task, the performance of all the 3 drivers
are very similar. The computed result of THW is shown
in TABLE II. The results using the idea of the original
work, were slightly larger.

AN N

Fig. 19: Safe Distance Training Data of All 3 Drivers

C. Lane Changing

The final task is to personalize the lane changing
behavior. The lane changing task is much more compli-
cated than the previous two, as a lot more traffic informa-
tion is considered during lane changing. In this task, we
tried to personalize the behavior of lane changing when
merging between two vehicles. The test scene used in

this case included four other vehicles, two on the current
lane and two on the desired lane as shown in Fig. 20.

Fig. 20: Scene setup for lane changing

We only collected data when the vehicle left the
current lane and ended up in the desired lane. The vehicle
would be running on only one test road with 4 vehicles
surrounding. 15 sets of data would be collected for each
driver.

The lane change model used in this case is a two-
layer model, consisting GMM and sinusoidal trajectory
module [9]. The model flow is shown in Fig. 21. The
GMM model predicts a time ?;,; to complete a lane
changing task based on four critical parameters, V, the
self vehicle velocity, H, the lateral distance, Dxr,,,,
the longitudinal distance from the leading vehicle on
desired lane and Dx r,,, the longitudinal distance from
the lagging vehicle on desired lane. A sinusoidal model
can then take the predicted ¢;,; and generate a trajectory
fot the lane changing task.

v

"y ”“’I Sinusoidal “’af(lt)
DXL,) G Model
D

XFp

Fig. 21: Lane Change Model

This model, as described before, lacks the personaliza-
tion of the driver’s performance in longitudinal direction.
Additionally, we collected driver’s longitudinal speed
and performed a Gaussian distribution fit to estimate the
driver’s preferred lane change speed, assuming that in
longitudinal direction is constant.

In order to use GMM to predict ¢;,; and v;,,, a large
amount of samples will be required to train and test the
GMM as the it is working in a 5-dimensional space. The
visualization of these data is not trivial either when the

10

number of samples are not big enough. In our case, in
the test scene we set up, only 15 samples were collected
for each driver due to time limit. All the data was used
to train the GMM and no test set was set up to validate
this model. Nevertheless, the small set of samples still
showed how the model was working with different data.
To compare the trained GMM model and the predicted
trajectory, we assume the inputs are the same for each
driver, which is [10m/s, -3.5m, 15m, -12m]. The output
lateral motion over time for three drivers is shown in
Fig. 22. In this specific case, one could observe that the
driver 3 had a more ’defensive’ style while driver 2 had
more ‘aggressive’ behavior since the lane changing was
done in a relative short amount of time, 3.5 seconds.

Fig. 22: Lateral Motion Given [10m/s, -3.5m, 15m, -
12m]

Noted that lane changing is a very complicated task,
the time to finish a lane changing could be affected
by many factors. A shorter amount of time or a higher
longitudinal speed could be ’defensive’ as well if, for ex-
ample, the driver consider lane changing under a certain
situation tends to be dangerous and hence it should be
finished as soon as possible. A high-dimensional GMM
model is a very powerful tool to handle this kind of
complicated situation, but at the same time, it will require
more amount of driver’s data.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

REFERENCES

C. Basu, Q. Yang, D. Hungerman, M. Sinahal, and A. D. Draqan,
“Do you want your autonomous car to drive like you?” in
2017 12th ACM/IEEE International Conference on Human-Robot
Interaction (HRI. 1EEE, 2017, pp. 417-425.

L. Fridman, “Human-centered autonomous vehicle systems:
Principles of effective shared autonomy,” arXiv preprint
arXiv:1810.01835, 2018.

M. Hasenjager, M. Heckmann, and H. Wersing, “A survey of
personalization for advanced driver assistance systems,” IEEE
Transactions on Intelligent Vehicles, 2019.

A. Rosenfeld, Z. Bareket, C. V. Goldman, S. Kraus, D. J.
LeBlanc, and O. Tsimhoni, “Towards adapting cars to their
drivers,” AI Magazine, vol. 33, no. 4, pp. 46—46, 2012.

G. N. Bifulco, F. Simonelli, and R. Di Pace, “Experiments toward
an human-like adaptive cruise control,” in 2008 IEEE Intelligent
Vehicles Symposium. 1EEE, 2008, pp. 919-924.

S. Ramyar, A. Homaifar, S. M. Salaken, S. Nahavandi, and
A. Kurt, “A personalized highway driving assistance system,”
in 2017 IEEE Intelligent Vehicles Symposium (IV). 1EEE, 2017,
pp. 1596-1601.

J. Wang, L. Zhang, D. Zhang, and K. Li, “An adaptive longitu-
dinal driving assistance system based on driver characteristics,”
IEEE Transactions on Intelligent Transportation Systems, vol. 14,
no. 1, pp. 1-12, March 2013.

C. Vallon, Z. Ercan, A. Carvalho, and F. Borrelli, “A machine
learning approach for personalized autonomous lane change initi-
ation and control,” in 2017 IEEE Intelligent Vehicles Symposium
(1v). 1EEE, 2017, pp. 1590-1595.

V. A. Butakov and P. Ioannou, “Personalized driver/vehicle
lane change models for adas,” IEEE Transactions on Vehicular
Technology, vol. 64, no. 10, pp. 4422-4431, 2014.

G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun,
“Autonomous automobile trajectory tracking for off-road driving:
Controller design, experimental validation and racing,” in 2007
American Control Conference. 1EEE, 2007, pp. 2296-2301.

J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“Casadi: a software framework for nonlinear optimization and op-
timal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1-36, 2019.

11

